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Abstract. The correction to the 1941 Kolmogorov theory is estimated using the theory of 
stochastic differential equations. Results are in good agreement with experimental data. 

1. Introduction 

Many attempts have been made during the last few years to explain the deviation from 
the 1941 Kolmogorov theory (K41). Landau and Lifshitz were the first to point out this 
deviation (see Landau and Lifshitz 1971, p 158). Among others, Gurvich and Yaglom 
(1967), Novikov and Stewart (1964), Obukhov (1962) and Kolmogorov (1962) then 
tried to formulate a theoretical explanation for this phenomenon and to evaluate the 
deviation experimentally. It is now generally accepted that the data on energy spectra 
in the inertial range in three-dimensional flows are compatible with the following 
expression: 

E ( K )  = C(E)*’~K-~’~(K/KO)-~ 
where B = O . l t 0 . 2  experimentally (Monin and Yaglom 1975). Frisch et a1 (1978) 
have related B to the Hausdorff dimension D of intermittent flows (anomalous 
dimension) as introduced by Mandelbrot (1974): 

B = 3(3 - D) = $p, p = 3 - D .  (2) 
In this paper an estimate of p is given using the theory of stochastic differential 
equations (Ventzel and Freidlin 1970). We believe that the idea by which this result is 
obtained may be a useful starting point for a new approach to understanding turbu- 
lence. 

2. The model of intermittency 

The following analysis is in the spirit of the work of Frisch et al (1978). A flow 
configuration in which vorticity is strongly localised is called ‘intermittent’. Vortex 
tubes and sheets (Townsend 195 1, Saffman 1968) are intermittent configurations, but 
there are probably more complicated situations in real turbulent flows (Frisch et a1 
1978). Vortex tubes and sheets actually have D equal to one and two, respectively, 
whereas experimentally D is greater than two. We introduce a hierarchy of scales { l n }  
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(1, = b-"lo, b being a number greater than one and lo the external length) in which 
intermittent configurations are present at random times. Let V i  be the characteristic 
intermittent velocity and P,, the probability of having an intermittent configuration at 
scale I,,. The mean value of any function f of the velocity field is given by 

(f( Vrl)) = Pnf( vi 1 + (1 - P f l ) f (  vf, ) (3) 

where V f ,  is the corresponding non-intermittent velocity at the scale 1,. Here V,, is the 
velocity difference across a distance I,,. It follows that Vk << V i  and therefore equation 
(3) may be written in the form 

( f (Vf l ) )  =Pnf(V3. (4) 
The kinetic energy per unit mass in the scale 1, is given by 

K"*1 

E,, = IKn E(W dK 

where K,, = 1;'. From the definition of V l  and making use of equation (4) we obtain 

E,, =P,,(VL)'. ( 6 )  

E(&) =P,,( Vy l , , .  (7) 

E(K,,)  can therefore be written as 

According to K41 theory the energy transfer E,, from the I,, to the scale is, on the 
average, independent of n and of viscosity. From dimensional considerations we 
therefore have 

(E,,)=(E)=P,,(V~)3/l,,. (8) 

E(&) = ( ~ ) ~ / ~ K i ~ / ' P f i ' ~ .  (9) 

From equations (7) and (8) we obtain 

Note that if P,, is independent of K,, there is no deviation from K41 theory. To estimate 
P,,, the theory of differential stochastic equations is used, i.e. a random force acting on 
scales 1, is considered. This stochastic perturbation may be due to thermodynamic 
fluctuations (Ruelle (1979) has recently estimated this effect and has argued that it must 
be relevant for small scales) or to an external noise due to macroscopical perturbation 
(Forster et a1 1977). It is possible to show in the theory of stochastic differential 
equations (Ventzel and Freidlin 1970) that the solution of the equation 

dXi =bi({Xj})dt+~ij dWj(t), (10) 

where d Wi(t) is the standard Wiener process, is equivalent to a Markov chain whose 
states are the stationary points (fixed points and limit cycles) of the deterministic 
equation 

dXi/dt = bi({Xj}). (1 1) 
Jumps between the states are at random times. For a physical approach to stochastic 
differential equations the reader is referred to Chandrasekhar (1943), while for a 
detailed mathematical theory reference is made to Gihman and Skorohod (1972; see 
also Jona-Lasinio (1979) for the use of stochastic differential equations to compute 
functional integrals in quantum mechanics). 
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V,, is considered to be given by a stochastic differential equation of the kind (10). 
Following Forster et ul (1977), it could be assumed that the noise is acting with equal 
intensity on all scales in the inertial range. This is consistent with the Obukhov 
hypothesis of Markovian diffusion in turbulent flows (see Monin and Yaglom 1975, p 
571). However, this assumption will later be seen not to be a key one, because the mean 
times of exit can be estimated from stationary states using just heuristic arguments. The 
important point is the idea that the velocity field satisfies a stochastic differential 
equation of the kind (10) and therefore has the important property of ‘jumping’ 
between the stable and unstable stationary states of the system. l h e r e  are assumed to 
be two kinds of stationary states: 

(a) intermittent configurations with high vorticity (unstable); 
(b) non-intermittent configurations (stable). 
The assumption concerning the stability of non-intermittent stationary configura- 

tions must not be regarded as applying to the Navier-Stokes equations but to the 
equations for the evolution of V,,. Let I ,  be a given scale of motion; V,, is the sum of all 
Fourier harmonics of the velocity field with wavenumber K satisfying the relation 

K, G K < K,+l 

where K,, = l;’. Therefore V, is a collective variable of the same kind as the one used 
by Desnyansky and Novikov (1974a, b). The words stability and instability in the 
assumptions (a) and (b) are thus to be taken in a statistical sense. This is consistent with 
the usual assumptions concerning turbulent flows. 

The system of course spends more time in the non-intermittent configurations than 
in the intermittent ones. One may then think of the time evolution of any intermittent 
variable at a given scale I,,, for instance the velocity V,, as a succession of rectangular 
pulses of mean length .f, and amplitude Vh separated by a mean time interval T,. (Note 
that this is the assumption of Novikov and Stewart 1964.) 7, is the mean time of exit 
from intermittent configurations, while T,, is the mean time for a jump from a 
non-intermittent to an intermittent configuration (T,  >> T,,). 

From the ergodic properties of the processes we obtain 

where (AT), , /T is the fraction of time the system spends in the intermittent configura- 
tions. Clearly 

P,, = Tn/ T,. (13) 

T ,  and T, in the inertial range must depend only on ( E ) ,  I,, and large scales properties 
(like lo). From this assumption we immediately obtain 

(14) T, - ( e ) - 1 / 3 1 i / 3  = (e)-1/3K;2/3 

Once there is a jump to an intermittent configuration, all the scales of the flow exhibit 
high values of vorticity; this implies that T,, is independent of n : 

From equations (13), (14) and (15) we have 
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Equation (9) therefore becomes 

E(K, )  - ( E ) ~ / ~ K ~ ~ / ~  (K,/K0)-2/9 

i.e. p = $ which is in good agreement with the known experimental values. 

(17) 

3. Higher-order moments 

Using (16), an estimate may be given of the dimensionless structure functions 

a,(/) = ( S V ( I ) ” > / ( S V ( I ) ~ ) ” ~  

where SV(1) is any fluctuating component of the difference between the velocities of 
two points r and r’ with Ir -r’l= 1. From equations (4), (8) and (15) we obtain 

a,(O - ( l / l o ) E p  (18) 

5, = 3 2  - P I .  (19) 

where 

The deviation of the small-scale probability distribution from the Gaussian dis- 
tribution is given quantitatively by the skewness S and the kurtosis F defined as follows: 

It is well known that the largest contributions to the velocity gradient are in the 
dissipative scale l d  (defined below), so that we obtain 

s -a3(ld), Fa: a4(ld). (21) 
l d  is defined as that scale for which the dissipative time T~ - l ; / v  is of the same order of 
magnitude as the inertial time i :  

~ - E ( l ~ ’ ) / l d ( € ) .  

After some algebra we obtain 

(22) 1/3 4 / 3  - 1  

From equations (22), (21), (19) and (18) we obtain 

Id - ioR-9/10, R = ( E )  10 Y . 

S - R3/” F - R 3 / ’ .  (23) 

F - R “ ,  cy 0.6, (24) 

The experimental value of F gives (Van Atta and Chen 1970, Van Atta and Park 1972) 

in agreement with (23). 

4. The case of two-dimensional turbulence 

The argument given for three-dimensional turbulence can be repeated for two dimen- 
sions. Because of vorticity conservation there is an enstrophy cascade to small scales 
and an inverse energy cascade to large scales (Kraichnan 1967, Batchelor 1969). If the 
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energy input is on scale 10, then it is commonly assumed (Kraichnan 1967, 1975, 
Batchelor 1969) that there are two different inertial ranges. The first one, 1 << lo, is 
dominated by the enstrophy cascade and has a power spectrum (Rose and Sulem 1978) 

E 1 ( K )  - (q)2’3K-3[1n(K/Ko)]-1/3 (25) 

where q is the enstrophy dissipation. The second inertial range, 1 >> lo, has an inverse 
energy cascade and a power spectrum 

E*(K) - (42/3K-5’3. (26) 

Our approach may be used to compute the corrections due to intermittency for 
equations (25) and (26). In the first inertial range r,, is a function of (7) and I,,. Since (q) 
has the dimensions of a time to the power minus three, r,, is n-independent. Therefore 
no corrections to the scaling law (25) come from intermittent configurations. This is in 
agreement with theoretical considerations of Kraichnan (1975). On the other hand, in 
the second inertial range, equation (26), the three-dimensional argument given before 
may be followed straightforwardly, thus obtaining 

Note that the exponent of the correction has changed sign as previously suggested by 
Kraichnan (1975). 
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